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Executive Summary Author: Rifdhan 

Our project aims to reverse the effects of JPEG image compression using Machine Learning. It               

explores the effectiveness of Neural Network models for regenerating data lost through JPEG             

compression. This procedure is referred to as Image Regeneration. 

 

We were able to evaluate two Machine Learning models, a Generative Adversarial Network (GAN)              

and a Convolutional Neural Network (CNN). Of the two, the GAN exhibited better performance, and               

was selected as the final model, upon which additional tests were performed. Overall, the model is                

able to regenerate image data lost through JPEG compression, as outlined in the Project Goal. The                

GAN is also able to satisfactorily meet all the Functions, Objectives, and Constraints in the Project                

Requirements, except for one Objective. Furthermore, when viewing the Output Images, the            

subjective performance of the model is much more impressive than the numbers would suggest. 

 

While we have learned that Machine Learning can indeed regenerate image data lost through JPEG               

compression, some of the performance characteristics we have observed surprised us. For example,             

when evaluating performance with Flower images, a model trained on Faces outperforms a model              

trained on Flowers. Another example: a model trained on 1% JPEG compressed images (very low               

quality) consistently degrades the image quality of 10% JPEG compressed images (higher quality).             

The nature of SSIM as a metric has been explored as well, and its limitations have been identified.                  

Furthermore, the effects of JPEG compression on other image properties have been studied. 

 

The project is two weeks behind the original schedule outlined in the Project Proposal, but some tasks                 

have been modified since then. Initial delays were mainly due to underestimating the impact of               

conflicting deadlines from other courses. Additionally, we have spent more time than anticipated on              

generating and analyzing results from our models; there is an endless stream of experiments to try.                

We also encountered difficulties with the ECF compute environment which we use for our work. 

 

The next steps in the project mainly relate to the Design Fair on April 4th. We aim to set up a                     

compelling interactive demonstration, where users take photos, view the effects of low-quality JPEG             

compression on them, and then feed the compressed Input Images into our Machine Learning model               

and view the resulting Output Images. We are actively working on building a system to enable this                 

experience. Despite the wide variety of results we have so far, we have only scratched the surface of                  

what this technology is capable of. The GAN model will continue to be tested under new conditions, in                  

order to learn as much as possible prior to the conclusion of the term.  

 



 

Group Highlights and Individual Contributions Author: Gokul 

This section summarizes the final accomplishments of the group, and notes the key contributions from               

each team member to the project as a whole. 

Group Highlights 

Our team is pleased to state that we were able to achieve the project goal: recover some of the data                    

lost in image compression using Machine Learning techniques. Furthermore, we were able to discover              

interesting relationships between image compression, image quality, and file size. Highlighted below            

are some of our key accomplishments and results. Please refer to the glossary in Appendix K for                 

definitions of technical terms. 

1. Accomplishment: Met all the project’s Functions and Constraints, and all but one Objective             

(please refer to Section 4.2). 

2. Accomplishment: We were able to stay close to schedule and achieve all major milestones              

set out in the Gantt Chart (refer to Section 3.2). The project is approximately 2 weeks behind                 

schedule, which is a reasonable degree of planning error for a project of this length. We                

explored a number of Machine Learning models, selected two models (the Generative            

Adversarial Network (GAN) and the Convolutional Neural Network (CNN)), and tested these            

them extensively. Finally, the GAN was chosen as the final model, and detailed experiments              

were performed with it. 

3. Accomplishment: ​We were able to sufficiently explore the capabilities of the model by             

modifying its constituent parameters, varying the training and testing dataset categories, and            

the varying the quality levels of the images in the dataset. For the complete list of variations                 

explored, please refer to Appendices F and G. 

4. Result: We discovered many interesting and in some cases, counter-intuitive relationships           

from the training and testing of the various datasets and parameter tunings. For example, a               

model trained using the Faces dataset exclusively, was able to regenerate Flower images             

better than it was able to regenerate Face images. There are many more results and               

conclusions available in Appendices F and G. 

5. Result: We explored the effects of JPEG Compression on file size and SSIM values. While               

higher SSIM values, on average, mean higher image quality, we found that it is a noisy metric.                 

Moreover, the relationship between compression level and file size was observed to be             

non-linear. For more details, please refer to Appendix D. 

 

 

 



 

Individual Contributions 

There are 4 members in our team. Key contributions for each member over the course of the project                  

are listed below. 

 

Gokul Kaushik 
● CNN 1 Model: Setup and configured the first model to generate an output. However, the model                

did not perform its intended task correctly. Due to the seeming early success, invested more               

time and effort attempting to correct the behaviour. Eventually abandoned the model to work              

on other tasks when other team members’ models emerged as more viable solutions. 

● Dataset: Obtained and organized the MIRFLICKR-1M dataset (the primary dataset used in the             

project). Also obtained the Manga 109 dataset (See Appendix E). 

● Team Leader: Organized meetings with the supervisor and internal team meetings. Assigned            

tasks and monitored in reference to the Gantt Chart. Initiated discussions on challenges and              

finalizing proposed solutions. Communicated with the relevant authorities for project          

resources. 

● Data Analysis: Did initial work on evaluating the performance of the two main models (the GAN                

and the CNN), leading the way to more detailed experiments on them. Later, gathered results               

from the two individual models, and did a comparative analysis on their respective             

performance. 

● Metric Evaluation: Examined the effectiveness of SSIM as a metric in the context of our               

project. Explored the relationship between JPEG compression, SSIM Score, and other           

attributes. See Appendix D for more details. Also explored the nature of JPEG compression              

itself, with regards to image quality and file size. 

 

Rifdhan Nazeer 
● GAN Model: One of the two working models, and the model eventually selected at the end of                 

the project. Responsible for setting up and modifying the existing code to perform its intended               

task of superresolution. Later, transformed the model to perform Image Regeneration.           

Responsible for training and testing the model on various datasets and parameters. 

● Data Analysis: Generated data on the performance of the GAN model in a variety of               

conditions. Explored modifying the model, training/testing on various image categories and           

JPEG compression levels, and cross-testing on different datasets than what the model was             

trained on. Produced extensive results using this accumulated data (see Appendix F). 

 



 

● Technical Expertise: Being the most experienced programmer in the team, provided           

assistance to other members with any technical difficulties. Wrote the key ReadMes and             

guides pertaining to understanding, setting up, and utilizing tools and software. Worked with             

Tim Trant to ensure the technical needs of the team were being met, and to troubleshoot                

various issues we encountered over the course of the project (described in Section 3.3). 

 

Zi Chien Chew 
● CNN 2 Model: One of the two working models. Responsible for setting up the model to perform                 

its intended task of image denoising. Later, transformed the model to perform Image             

Regeneration. Learned the libraries and tools necessary to achieve this. 

● Data Generation: Responsible training and testing the CNN 2 model on various datasets and              

conditions. Generated data on the performance of the model under these circumstances, and             

stored the data in an appropriate format for further evaluation (see Appendix G). 

● Modification of Model: Explored modifying the ML model, and the related performance effects             

this had. Initial results indicated the changes in performance were not worth the tradeoffs              

encountered with these modifications, so the investigation was concluded early. 

 

Henry Chen 
● Colorization Model: One of the three models that performed its intended function. Setup and              

configured the model to perform image colorization. Investigated modifying the model to            

perform Image Regeneration, but eventually abandoned the project and moved to work on             

CNN 2 model (with Zi Chien), as it showed greater promise. 

● Pixiv Dataset: Wrote web crawler script to download cartoon images from pixiv.net [9] to assist               

with training and testing the CNN 2 model. This model was designed for use with cartoon                

images (which were not available in other existing datasets), so a specialized dataset was              

required. However, this dataset did not end up being used much, as we required the use of a                  

standardized data sets between the two models in order to be able to compare their               

performance fairly. The Manga 109 dataset eventually replaced it. 

● Demo for Design Fair: Working on an application to demonstrate a practical use case for the                

research. The application will take photos of subjects, compress the images into a low JPEG               

compression level, and regenerate the some of the data lost using our ML model. The images                

at these three stages will be displayed side-by-side. 
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1.0 Introduction Author: Henry 
This report describes our capstone project for the ECE496 final year design course. It discusses the                

motivation behind the research project, and documents the final design implementation and            

performance with respect to the updated Project Requirements from the Progress Report. This section              

briefly introduces the project, and provides explanations of key concepts. 

1.1 Background and Motivation 
Data compression is the process of representing data using fewer bits [1]. It has become increasingly                

popular on the internet. In the past 5 years alone, the fraction of websites using some sort of data                   

compression rose by 30% [2]. 

 

Compression can be either lossless or lossy. Existing lossy compression technologies achieve low file              

sizes at the expense of image quality. However, the compression techniques used cannot recover the               

lost data [3]. The most popular lossy compression image format used on the internet is JPEG [4].                 

Figure 1 below shows the drawbacks of lossy compression. An analysis of the performance of existing                

popular applications for improving image quality is presented in Appendix J. 

 

 

Figure 1 - The problem: Lossy compression incapable of data recovery (adapted from [5]) 

1.2 Project Goal 
The goal of this project is to explore how well Machine Learning techniques can regenerate data lost                 

through JPEG image compression. This process will henceforth be referred to as Image             

Regeneration. 
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1.3 Project Requirements 
Presented in Table 1 below are the project’s final functions, objectives, and constraints. 

 

Table 1 - Functions, Objectives, and Constraints 

ID Description 

1 Primary Functional Requirement: ​The system must generate an output image. 

2 Functional Requirement: The SSIM Score must be strictly positive (i.e. SSIM 2 - SSIM 1 >                

0). This means that the Output Image must have a greater SSIM score than the Input Image                 

with reference to the Target Image for any JPEG compression level (between 0% and 100%). 

3 Sub Functional Requirement: ​The system should be able to accept input images in the              

JPEG format (as it is the most popular lossy image format on the internet [4]). 

4 Objective: Minimize computation time. The design should produce the Output Image in under             

20 seconds on the ECF workstations. 

5 Objective: ​Minimize the JPEG compression level. The design should achieve an SSIM Score             

of at least 0.05 with Input Images of 10% JPEG compression or lower. This implies that SSIM                 

2 is greater than SSIM 1 by at least 0.05. 

7 Objective: ​Performance should generalize across varied image content. Using a test set of 50              

random Input Images (from a dataset with varied image content), the difference between the              

highest and lowest SSIM Scores among all the test images should be less than 0.2. 

8 Constraint: ​The Image Regeneration should be done using an ML model. 

9 Constraint: ​The model should run on standard computing hardware (x86 processor           

architecture and NVIDIA GPUs, as present in ECF workstations). 

10 Constraint: ​The system must use publicly-available datasets. 

11 Constraint: ​System should use an existing ML library. 

12 Constraint: ​ML model should not overfit on training data (should be able to regenerate data in                

previously-unseen images). The difference between training and testing SSIM Scores should           

be less than 0.3. 
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2.0 Technical Design Author: Rifdhan 
This section introduces some technical concepts, then details the final design. For most of the project,                

we worked with two different ML models: a Generative Adversarial Network (GAN), and a              

Convolutional Neural Network (CNN). Towards the end of the project, we selected the GAN as the                

final model, due to its lower resource requirements, and ease to work with. It also exhibited better                 

performance in most of the comparative tests performed between the two models (see Appendix H). 

2.1 Measuring Image Similarity 
Our project aims to take a compressed image and make it “better”. However, measuring “better” is a                 

challenge, and how we define it greatly impacts how our ML Models are evaluated. For our project,                 

“better” means more similar to the Original Image. Structural Similarity (abbreviated SSIM) is the              

metric chosen to measure similarity between two images. Refer to Appendix C for a discussion on                

SSIM and other competing metrics. SSIM was designed to approximate how humans perceive             

similarity in images [8]. Its values range from 0 to 1, with a higher value indicating greater similarity.                  

An SSIM value of 1 indicates that the two compared images are identical, and a value of 0 indicates                   

no similarity. During the project, we discovered a few shortcomings of SSIM (see Appendix D). 

2.2 Machine Learning Methodology 
To provide a foundation for the technical design, we will first introduce some basic terminology. There                

are 3 main stages in the ML process (as depicted in the Figure 2 below). 

 

 

Figure 2 - A block diagram of the regeneration process and scoring methodology 
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Steps in evaluation process: 

1. Original or Target Image ​: This is the original image at full quality without any pre-processing. 

2. Compressed or Input Image ​: JPEG compressed version of the Original Image, at some             

quality level measured in percent. 

3. Generated or Output Image ​: The image generated by the machine learning model. 

 

In order to measure a model’s performance, we need to compare both the Input and Output Images                 

with the Target Image respectively. An SSIM score is generated for the two pairs (SSIM 1 = Input and                   

Target Image, SSIM 2 = Output and Target Image). SSIM 1 indicates how similar the Compressed                

Image is to the Original Image. It acts as a baseline upon which the model must improve. SSIM 2                   

measures how similar the Generated Image is to the Original Image. If SSIM 2 is greater than SSIM 1,                   

then the model has successfully regenerated some of the data lost in JPEG compression. Note that if                 

SSIM 2 is somehow less than SSIM 1, then the model has degraded the image further, and is                  

obviously not successful. Refer to Section 1.3 for specifics on SSIM scores that we aim to achieve. 
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2.3 System-Level Overview 

 

Figure 3 - System-Level Overview, consisting of 3 Stages, discussed in Section 2.4 
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2.4 Module-Level Descriptions 
The Machine Learning model consists of 3 main stages: Preprocessing, Training, and Testing, as              

seen in Figure 3 above. These stages are described in more detail in this section. 

2.4.1 Preprocessing Stage 
The first stage in the process is to prepare a dataset. The main dataset used in our project was the                    

MIRFLICKR-1M dataset [7], consisting of one million images of various categories. This dataset was              

then sorted by image category, to permit training/testing on specific categories, such as Faces or               

Clouds. Afterwards, the images were scaled to a smaller resolution if necessary (some images were               

too large and caused memory problems on the ECF machines - see Section 3.3), and then                

JPEG-compressed to a number of preset compression levels (such as 10%, 5%, and 1%). The               

images in each category were then split into a training and testing set, consisting of 80% and 20% of                   

the images in the category respectively. In some cases, where image categories contained a large               

number of images, the test set was reduced to less than 20%, as testing is time-consuming. This                 

entire procedure was performed for all other datasets used in the project as well. 

2.4.2 Training Stage 
The second stage in the process is the most time-consuming: training the ML model. In this stage, the                  

training dataset is provided to the model, and it randomly selects images from this set to be Input                  

Images. These images are used to generate Output Images, and the performance of the model is                

evaluated for each image, using a fast metric, such as Peak Signal-to-Noise Ratio (used in the CNN)                 

or Softmax Cross-Entropy (used in the GAN). Based on these performance characteristics, the             

model’s internal parameters are adjusted, and the process repeats with the next training image. At               

regular intervals during the training process, the model state is saved to persistent storage, marking               

its progress as it trains. By the end of the stage, we have a set of trained models, at incremental levels                     

of training. 

2.4.3 Testing Stage 
In the final stage of the design, we take the set of trained models, and evaluate the performance of the                    

system with them. The set of test images are fed into the models as the Input Images, and the models                    

generate Output Images for each. These images are then compared with the Original Images, and a                

variety of statistics are calculated, including SSIM Score, Mean-Square Error, and file size. Since we               

have a separate model for each incremental level of training, we can then graph these statistics                

versus the amount of training, to observe how the statistics change as the model trains on more                 
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examples. This allows us to gain an understanding of how much training is appropriate, and at what                 

levels of training the model underfits or overfits the data. Additionally, cross-testing between datasets              

was performed to evaluate how the model is able to adapt to the dataset it trained on. This involves                   

testing the model on a different dataset than it was trained on. 

2.5 Overview of GAN Model 
The GAN model was the final model used in the project. It contains two Neural Network models within                  

it: the Generator and Discriminator models. The Generator model was modified to convert its              

functionality from superresolution to Image Regeneration. A block-level diagram of both models,            

including the unmodified and modified versions of the Generator, are presented below. Note that              

these diagrams are simplified - blocks contain more parameters then shown here. The number              

indicated above each block indicates the number of output layers it produces. 

 

 

Figure 4 - Discriminator model (was not modified); the output is a prediction of whether the input 

image is an Original Image or a Generated Image 
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Figure 5 - Generator model prior to modification (performs superresolution); notice the output is 

double the width and height of the input 

 

 

Figure 6 - Generator model after modification (performs Image Regeneration); the upscaling 

functionality towards the end of the network was removed 
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2.6 Assessment of Final Design 
We are pleased with the performance of our final design, the GAN model. We successfully evaluated                

two different Machine Learning models (a GAN and a CNN) on a multitude of training and testing                 

datasets, and gained a good understanding of the strengths and limitations of using Machine Learning               

to solve the of Image Regeneration, and found the GAN was the better performer of the two (see                  

Appendix H). The individual components of the design perform their intended functions without issue,              

and we were able to use the GAN to generate a wealth of results and statistics. The model was also                    

able to meet all of our Functions and Constraints, and most of our Objectives, demonstrating its                

successfulness. Furthermore, as seen in the sample images in Figure 7 below, the regeneration ability               

of the GAN is quite visible just through observation of the results. Detailed performance statistics for                

the GAN model can be found in Appendix F. 

 

 

Figure 7 - Original (left), Input (right), and Output (bottom) Images for a 10% JPEG test image from 

the Faces dataset. Regeneration performed by the GAN model, trained on Faces at 10% JPEG. 
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3.0 Work Plan Author: Zi Chien 
This section outlines the progress of the project, measured through individual tasks and milestones. A               

discussion of problems encountered is presented as well. Overall, the project is approximately 2              

weeks behind schedule, but we have adjusted the remaining tasks to allow us to complete the                

remaining work prior to the Design Fair. 

3.1 Work Breakdown Structure 
Presented in Table 2 below is an updated Work Breakdown Structure (WBS), corresponding to the               

updated Gantt Chart shown in the following section, Section 3.2. Note that this WBS represents the                

final set of tasks as completed during the project. We tried to avoid changing the number of any                  

existing task, resulting in discontinuous numbering when tasks were added/removed/reordered later. 

 

Table 2 - Work Breakdown Structure Note: R = Responsible, A = Assisting 

# Task Description Rifdhan Gokul Zi Chien Henry 

1 Obtain ECF resources R    

2 Select metric for measuring image similarity R    

3 Explore image datasets     

3.1 Explore cat dataset    R 

3.2 Explore IMAGEnet dataset  R   

3.3 Explore cartoon image dataset   R  

3.4 Explore MIRFLICKR-1M dataset  R   

5 Find existing ML model that solve similar 
problems, learn libraries and tools used, set 
up locally and get working as-is 

    

5.1 CNN 1 (Superresolution)  R   

5.2 Colorization    R 

5.3 GAN (Superresolution) R    

5.4 CNN 2 (Waifu2x)   R  

6 Modify existing implementations to solve our 
problem 

    

6.1 CNN 1  R   
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6.2 Colorization    R 

6.3 GAN R    

6.4 CNN 2 (Waifu2x)   R  

7 Select two most successful models and 
evaluate further with new data 

    

7.1 GAN R    

7.2 CNN 2 (Waifu2x)   R  

*7 Organize additional datasets     

*7.1 Generate additional training datasets from Flickr  R   

*7.2 Organize MIRFLICKR-1M dataset  R   

*7.3 Generate Pixiv image dataset for CNN 2    R 

*7.4 Standardize dimensions and resolutions of Pixiv 
dataset 

   R 

10 Optimize implementation against objectives     

10.1 Obtain GPU support R    

10.3 Modify code to utilize GPUs and train models 
using GPUs 

R  A  

10.2 Explore generalizing to wider selection of input 
images 

 R  A 

11 Train and test final models across a variety 
of datasets and compare performance 

    

11.1 GAN R    

11.2 CNN 2 (Waifu2x)   R  

8 Select the most successful model and refine 
implementation: GAN 

    

8.1 Improve model R  A  

8.2 Automate testing on wide variety of training 
datasets 
 

R  A  

9 Verify design against test criteria     
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9.1 Make tool to measure SSIM and MSE errors  R   

9.2 Document statistics on trained models  R A  

12 Develop interactive system to demonstrate 
project at design fair 

    

12.1 Frontend mobile app to take photos and display 
images 

   R 

12.2 Backend server to interface with ML model    R 
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3.2 Final Gantt Chart 

 
Figure 8 - Final Gantt Chart (part 1 of 2)  
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Figure 8 - Final Gantt Chart (part 2 of 2) 
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3.3 Challenges Faced 
Listed in Table 3 below are some of the anticipated risks and major problems encountered during the                 

project. Some of the anticipated risks from the Project Proposal did not end up significantly impacting                

us, but are included for completeness. In addition, some new challenges were encountered since the               

submission of the Project Proposal, and have been listed below. 

 

Table 3 - Challenges 

Risk or Problem Encountered Solution Found 

Excessive Computation Time: 
The ML model could potentially 

require too long to train or test. 

Not a problem. Computation obviously took time, but given the 

nature of the project, it was reasonable and within expectations. 

Limited Storage Space:​ The 

disk space on ECF workstations 

machines is limited, and more 

space than is available may be 

required. 

While the ECF provided us with a large shared storage location 

(about 1.5 TB), this turned out to be insufficient to store all our 

generated Output Images for the various test conditions.  

 

Our solution was to evaluate the performance of the generated 

images, then delete them. We created infrastructure to generate 

individual Output Images as required. This frees up the of the 

disk space used, without sacrificing the ability to inspect 

individual images when desired. 

Inability to Regenerate Lost 
Data:​ The ML model may be 

unable to produce an output 

image of higher quality than the 

input image. 

Not a problem. The ML model was able to regenerate data with 

a positive SSIM Score. The only exceptions were a small 

number of outliers, as discussed in Section 4.2.2. 

Learning Curve: ​Learning to use 

the Machine Learning libraries 

and tools took more time than 

anticipated during the planning of 

the project. 

This proved to be a significant challenge. A lot of time was 

spent learning and documenting the learning (for the benefit of 

all members). This contributed a week of delay to the project 

and is reflected in changes to the Gantt chart. 
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Limited Graphics Memory: ​The 

GPUs in the ECF workstations 

had limited graphics memory, 

meaning we were unable to 

explore very complex models. 

This capped the level of model complexity (number of layers) 

that could be experimented with. Through trial and error, we 

trained up to the maximum complexity given the GPU 

constraints. Please refer to Section 2.5 for a diagram of the 

model layers in the GAN. 

Problems with Long-Running 
Programs: ​Training and testing 

Machine Learning models can 

take up to several days. 

However, sometimes our 

programs were being stopped 

mid-execution for unknown 

reasons. 

This problem was the primary reason behind the project’s 

delays in the second half of the year. Despite troubleshooting 

the problem with the ECF lab manager, we have yet to find a 

solution. 

 

Our temporary workaround was to employ a system of progress 

snapshots which stored the state of training/testing at regular 

intervals. Should the program be stopped at any point, the last 

snapshot would act as a new starting point. This system 

reduced the impact of random stoppages. However, it is still not 

an ideal solution, and we are continuing to work with the ECF to 

find a more permanent solution. 

 

Overall, this issue added about a week’s delay to our project 

timeline. 
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4.0 Testing and Verification Author: Gokul 
This section details the methodologies used to validate our system, and the results of these tests. 

4.1 Verification Matrix 
Table 4 below discusses how we measured if each project requirement was met. For items which                

have associated tests, the testing methodology is described in a corresponding section after the table.               

Lastly, the results for each test are listed in the table as a pass or fail, with details provided in the                     

following section (Section 4.2). 

 

Table 4 - Final Verification Matrix 

ID Description Design 
Review 

Test Results 

1 The system will generate an output image. X  Pass 

(Section 

4.2.1) 

2 The SSIM Score must be strictly positive (i.e. SSIM 2 -           

SSIM 1 > 0). This means that the Output Image must           

have a greater SSIM score than the Input Image with          

reference to the Target Image for any JPEG        

compression level (between 0% and 100%). 

 X 

(Section 

4.1.1) 

Pass 

(Section 

4.2.2) 

3 The system should be able to accept input images in          

the JPEG format. 

X  Pass 

(Section 

4.2.3) 

4 The design should produce the Output Image in under         

20 seconds on the ECF workstations. 

 X 

(Section 

4.1.2) 

Pass 

(Section 

4.2.4) 

5 The design should achieve an SSIM Score of at least          

0.05 with Input Images of 10% JPEG compression or         

lower. This implies that SSIM 2 is greater than SSIM 1           

by at least 0.05. 

 X 

(Section 

4.1.3) 

Fail 

(Section 

4.2.5) 
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7 Using a test set of 50 random Input Images (from a           

dataset with varied image content), the difference       

between the highest and lowest SSIM scores among        

the Output Images should be less than 0.2. 

 X 

(Section 

4.1.4) 

Pass 

(Section 

4.2.6) 

8 The Image Regeneration should be done using an ML         

model. 

X  Pass 

(Section 

4.2.7) 

9 The model will run on ECF workstations. X  Pass 

(Section 

4.2.8) 

10 The system will use publicly-available datasets. X  Pass 

(Section 

4.2.9) 

11 System will use an existing ML library. X  Pass 

(Section 

4.2.10) 

12 The difference between training and testing SSIM       

Scores should be less than 0.3. 

 X 

(Section 

4.1.5) 

Pass 

(Section 

4.2.11) 

 

4.1.1 Test: Image Data Regeneration 
Measuring the SSIM scores is done with a Python script which evaluates any two given images. We                 

used this script to compute SSIM 1 and SSIM 2, and subtracted them to find the final SSIM Score, as                    

depicted in Figure 2 in Section 2.2. If the SSIM Score is found to be positive, it passes the test. 

4.1.2 Test: Timing Model Performance 
We used the Linux time utility [9] to evaluate how long a trained models take to produce an Output                   

Image for a given Input Image. This value does not vary significantly between images, so testing it on                  

a few samples was sufficient to determine if it is consistently under the 20 second threshold on ECF                  

workstation machines. 
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4.1.3 Test: Maximizing Regeneration 
A set of test images were compressed to 10% JPEG quality, and the model’s performance on them                 

was evaluated in the manner described in Section 4.1.1 above. If the average SSIM Score for this set                  

is greater than 0.05, the test is passed. 

4.1.4 Test: Variance Testing 
A set of 50 images were randomly selected from the MIRFLICKR-1M dataset, which contains images               

of various categories [7]. We then employed the testing methodology in Section 4.1.1 to determine the                

SSIM Score for each of the 50 images, and find the difference between the highest and lowest                 

Scores. If this difference is less than 0.2, the test is passed. 

4.1.5 Test: Testing for Overfit 
The testing methodology outlined in Section 4.1.1 was used to evaluate the performance of the model                

when given a two datasets: one consisting of images it saw during training, and one consisting of                 

previously-unseen images. If the difference between the average SSIM Scores for these two sets is               

below 0.3, the model passes the test. 

4.2 Module-Level Test Results 
This section contains the results for each of the test outlined in Section 4.1. Evidence is provided for                  

each result when appropriate. 

4.2.1 Result: Output Image Generation 
The GAN model is able to generate output images without issue. Several examples are available in                

Appendix F, in the last two sections. 

4.2.2 Result: Image Data Regeneration 
The test outlined in Section 4.1.1 required a strictly positive SSIM score. Our final model (the GAN)                 

was able to achieve an average SSIM score that was strictly positive for all Standard Test Conditions.                 

Standard Test Conditions are when the model is tested on the same image category that it was                 

trained on, and at the same JPEG compression level. Figure 9 below shows the average SSIM                

Scores (which are all positive) versus training level for all Standard Test Conditions. However, while               

the average SSIM Scores were positive, there were individual images which had negative SSIM              

Scores. These negative-Scoring images constituted about 3.5% of all images tested (see Table 5              

below). Therefore, we consider this result as passing the test, since the majority Score positively. An                
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investigation into these outlier images revealed that there was a considerable degree of pollution in               

the datasets (see Appendix E). Additionally, there are limitations with SSIM metric itself (see Appendix               

D), meaning negative Scores do not always indicate visually poorer quality images. 

 

 

Figure 9 - Performance of model in Standard Test Conditions 

 

Table 5 - Analysis of Results with Negative SSIM Scores 

Image Category Compression Level Quantity of SSIM Scores Below Zero 

Faces 10% 2.1% (74/3524) 

Faces 5% 1.9% (67/3524) 

Faces 1% 7.7% (272/3524) 

Clouds 10% 1.5% (28/1856) 

Flowers 10% 3.1% (109/3444) 

Manga 10% 1.1% (33/3000) 

Mixed 10% 6.2% (187/3000) 

Average 3.5% (770/21872) 
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4.2.3 Result: JPEG Input Format 
The system uses the PIL Image Processing library for Python [15], which is able to read image files in                   

any standard image format, including JPEG. 

4.2.4 Result: Timing Model Performance 
The time taken to regenerate 50 random test images from the Faces dataset, at 10% JPEG quality,                 

are presented in Table 6 below. Even while using CPU for computations on the ECF workstations,                

timings are well below the threshold of 20 seconds as defined in the test. 

 

Table 6 - Regeneration Time Analysis, Faces Dataset, 10% JPEG Compression 

Test Conditions Regeneration Time Per Image 

Mean (s) Variance (s ​2​) 

Using CPU for compute 6.3560 1.1073 

Using GPU for compute 0.4148 0.0146 

 

4.2.5 Result: Maximizing Regeneration 
The average SSIM scores for Standard Test Conditions are presented in Figure 10 below. Note the                

position of the 0.05 line on the y-axis: only 3 of the 7 test conditions achieved an average SSIM Score                    

above this line (the red graph was was very close to passing but was just below it). Therefore, our                   

model is not able to satisfy this objective consistently. A possible factor that contributed to the failure                 

is the inconsistency of SSIM as a metric. Refer to Appendix D for a discussion about this. Moreover, if                   

the compressed Input Images already have high SSIM values, there is not much room for our model                 

to improve upon, and the SSIM Scores are more tightly bounded. This may have been a contributing                 

factor to the poor performance of the Manga Dataset (refer to Appendix E). 
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Figure 10 - Model performance in Standard Test Conditions 

 

4.2.6 Result: Variance Testing 
The model was trained and tested on a Mixed dataset, and the performance results in terms of SSIM                  

Score versus training level is presented in Figure 11 below. The difference between the minimum and                

maximum SSIM Score after 640,000 training examples was just over 0.15, and is below the threshold                

of 0.2 set by the test. 
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Figure 11 - Performance of model on Mixed dataset, with minimum and maximum individual scores 

per training level 

 

4.2.7 Result: Uses a Machine Learning Model 
The GAN (Generative Adversarial Network) model is a type of Machine Learning model. It consists of                

two separate neural networks internally, and is discussed in more detail in Section 2.5. 

4.2.8 Result: ECF Workstation Environment 
All of our models were trained and tested on the ECF workstation machines. Refer to Section 3.3 for                  

the challenges and limitations of using the ECF machines. 

4.2.9 Result: Public Datasets 
The two datasets used in the project were the MIRFLICKR-1M dataset [7], and the Manga 109                

dataset [16], both of which are publicly-available. Please refer to Appendix E for a discussion of                

datasets used. 

4.2.10 Result: Existing Machine Learning Libraries 
Both the GAN and the CNN models use the Chainer Machine Learning library [17] on Python. This is                  

a well-established library and is available for use free of charge. 
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4.2.11 Result: Testing for Overfit 
This test evaluates the degree of overfit in the model. We measured the SSIM Scores on images the                  

model has already seen (from the training set), and the SSIM Score on images the model has never                  

seen before (from the testing set). The difference between these Scores was much less than the 0.3                 

maximum for this test. The two plots are presented in Figure 12 below. The actual difference between                 

these ends up being under 0.0025 after 640,000 training examples, thus satisfying the requirement. 

 

 

Figure 12 - Performance of GAN on seen and unseen images 
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5.0 Conclusion Author: Gokul 
The project’s intended goal was to explore the feasibility and effectiveness of using Machine Learning               

techniques to regenerate data lost through JPEG Compression. We were able to prove, through              

experimentation and analysis of the resultant data, that not only are ML techniques feasible, they are                

remarkably effective for Image Regeneration. 

 

Over the course of the project, we developed two working models: the GAN and the CNN. The CNN                  

was discarded due to its inferior performance, and the final model selected was the GAN model. The                 

GAN model meets all Functions, Objectives and Constraints except the Objective to maximize             

regeneration. The models had SSIM Scores in the range of 0.04 to 0.06 for most test cases, which                  

resulted in half of them failing to meet the 0.05 SSIM Score threshold of the objective, but this is                   

mostly due to the limitations of SSIM Score as a metric, and pollution in the datasets. 

 

The viability of SSIM and MSE as metrics for determining model performance was also explored               

during the project. We found SSIM to be a much less accurate metric than originally anticipated.                

Though the performance numbers achieved by the model seem negligible, in actuality, the             

performance was subjectively very good. Additionally, we discovered some counter-intuitive          

relationships between various properties, such as oscillatory behaviour in SSIM Values at different             

JPEG compression levels. 

 

Our group is satisfied with the level of progress we have achieved in this project despite our limited                  

initial knowledge of the subject, and the difficulties encountered with utilizing the ECF workstations.              

There are many practical applications to this technology, such as reducing the file size impact that                

images have on mobile devices, freeing up valuable storage space. Our initial foray into this technique                

could pave the way for even more intensive studies to come. 

 

We are currently two weeks behind schedule, but we have adjusted tasks in the work plan to ensure                  

the project is complete in time for the Design Fair on April 4th. For the Design Fair, we plan to                    

showcase the successfulness of our project by having a live demonstration that takes portraits of               

participants, JPEG-compresses them to a low quality level, and regenerates the compressed images             

using a model trained on Faces. 
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Appendix A: Gantt Chart History       ​Author: Rifdhan 

A.1 Original Gantt Chart - Project Proposal 

 

Figure A1 - Original Gantt Chart from Project Proposal. 
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A.2 Updated Gantt Chart - Progress Report 

 

Figure A2 - Gantt Chart from Progress Report (part 1 of 2). 
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Figure A2 - Gantt Chart from Progress Report (part 2 of 2). 
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Appendix B: Original Validation Tests Author: Rifdhan 
Table B1 below contains the original Verification Matrix from the Project Proposal. The sections              

following it detail the two tests outlined in the table. 

Table B1 - Verification Matrix 

ID Description Review of 
Design 

Test 

1 The system will generate an output image. X  

2 The system will regenerate some of the data lost when          
compressing the input image. 

 X 
(Section B.1) 

3 The input will be in the JPEG format. X  

8 The image regeneration will be done using an ML         
model. 

X  

9 The model will run on standard computing hardware. X  

10 The system will use publicly-available datasets. X  

11 System will use an existing ML model. X  

12 ML model should not overfit on training data  X 
(Section B.2) 

 

B.1 SSIM Measurement Methodology 
The SSIM measurement methodology, developed by Wang et al., was designed specifically for the              

comparison of two images, with the goal of being close to how humans evaluate similarity in images                 

[8]. Its value is inversely proportional to the difference between the images. A value of 1 indicates no                  

difference, and a value of 0 indicates no similarity. It is robust against minor changes across the entire                  

image (eg. change in contrast), but identifies large changes, even in a small portions of the image. 

B.2 Testing for Overfit 
The standard method of verifying a trained ML system is to test it on previously-unseen data [9]. We                  

will set aside a portion of the dataset (referred to as the test data) specifically for this purpose prior to                    

training the system. We will use around 20% of the dataset as the test set. The error in the testing set                     

should be no more than 3x the error in the training set. 
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Appendix C: Existing Image Quality Metrics Author: Rifdhan 
One of the project’s primary objectives is to achieve a higher quality image than the source.                

Therefore, we need a methodology to quantify similarity in images. Outlined below are a few possible                

methods. 

C.1 Mean Square Error (MSE) 
MSE (Equation C1 below) is a fairly common method for measuring error which has applications               

outside image comparison. The MSE value is directly proportional to the difference between the              

images. A value of 0 indicates no difference. It is not very useful for comparing image data, as it                   

compares individual pixels, without considering context or changes in neighbouring pixels. 

 

SE (Y ) M = n
1 ∑
n

i=1
i

︿
− Y i

2
  

Equation C1 - Mean-Square Error 

 

For example, if the entire image became slightly darker, the MSE would be large, even though the                 

perceived change in the image would not be significant. Conversely, if a portion of the image was                 

modified completely with the rest remaining unchanged, the MSE would not be as high, as the                

unchanged pixels represent the majority. 

C.2 Structural Similarity (SSIM) 
The SSIM measurement methodology (Equation C2 below), developed by Wang et al., was designed              

specifically for the comparison of two images, with the goal of being close to how humans evaluate                 

similarity in images [5]. Its value is inversely proportional to the difference between the images. A                

value of 1 indicates no difference, and a value of 0 indicates no similarity. 

 

 

Equation C2 - Structural Similarity (SSIM) 

 

It is robust against minor changes across the entire image (eg. change in brightness), but identifies                

drastic changes, even in a small portions of the image. 
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Presented in Figure C1 below is a comparison between MSE and SSIM when comparing three               

images. For the contrast example, the MSE error is 1401, while SSIM gives 0.78. For the                

Photoshopped example, the MSE error is 1077, while SSIM gives 0.69. These results show that SSIM                

estimates perceived differences better than MSE. Therefore, we will use SSIM as the comparison              

method between two images for the project. 

 

 

Figure C1 - A comparison between the MSE and SSIM methods for evaluating similarity between 

images (taken from [5]). Contrast: MSE=1401, SSIM=0.78 and Photoshopped: MSE=1077, 

SSIM=0.69 
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Appendix D: Metric Evaluation Author: Gokul 
Various tests are used to verify the correct and desirable functionality of the model (Section 4.0). This                 

section analyses the effectiveness of metrics used in the project, and presents some insights into               

relationships between them. 

D.1 The Ideal Image Storage Format 
In our view, an ideal image storage format has three properties: High Quality, Low File Size, and                 

Quick Viewing. The Figure D1 below illustrates how the three objectives compete with each other.               

Each of the three corners of the triangle illustrate maximizing an objective at the cost of the other two.  

 

 

Figure D1 - Competing Objectives in the Ideal Image Storage Format 

 

Our design, with reference to these competing objectives, seeks to reduce storage space and              

maintain image quality (as much as possible), at the cost of viewing speed. Each of the three                 

objectives can be measured using different metrics. The metrics are listed in Table D1 below.  

Table D1 - Metric Types 

Image Quality (High Quality) Storage Space (Low File Size) Viewing Speed (Quick Viewing) 

SSIM Value 

SSIM Score 

MSE Value 

JPEG Compression Level 

File Size 

 

Regeneration Time (per Pixel) 

MACs (Multiply Accumulates) 
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D.1.1 Image Quality 
Image quality metrics measure how high or low quality an image is. There are different popular                

techniques used to approximate the quality of an image. The metrics listed above (with the exception                

of JPEG Compression Level, which is not a metric) are not absolute benchmarks of quality. Rather,                

they compare two images, and their value is proportional (directly or indirectly) to the difference               

between the images. SSIM Value and SSIM Score are used to approximate how humans perceive               

quality in images. Human test subjects are used to justify the accuracy of their metrics. In contrast,                 

MSE is used to calculate the per pixel difference between two given images. 

 

Image Quality Considerations: 

● SSIM Value: A measure of the similarity between two images. Identical images have a value of                

1 and dissimilar images have values lower than 1. 

● SSIM Score: A measure of the difference in similarity between two image pairs. Each pair               

contains an original image and the score is reflective of which image pair is more similar to the                  

original. For more details, refer to Section 2.2. 

● MSE Value: The Euclidean distance difference between two images. Identical images have a             

value of 0 and non-identical images have values higher than 0. 

● JPEG Compression Level: The percentage quality at which a JPEG image is compressed at.              

Lower percentages incur more data loss, but have smaller file sizes. 

D.1.2 File Size 
The amount of storage space required for a file can be measured by its file size. A higher file size                    

indicates more disk space required for the image. It is desirable to reduce the amount space taken up                  

by a given image, so that the storage medium can accommodate more data. 

D.1.3 Viewing Speed 
Viewing speed measures the amount of time to load and render an image. With modern computers,                

images in standard file formats appear almost instantaneously on the display when opened. However,              

as our project needs to regenerate images on demand, the load time is noticeably increased. It will                 

certainly not be as instantaneous, as machine learning models are computationally intensive.  

 

There are two ways of measuring the speed. One method is to record the amount of physical time the                   

processor takes to regenerate an image and divide it by the number of pixels in contained in the                  
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image. This is called Regeneration Time. It is specific to the processor used (an older, slower                

processor will take more time than a newer, faster one). 

 

The second method is to measure viewing speed as proportional to model complexity. A more               

complex model (with more layers and weights) involves more computations, which for a any given               

processor will take up more real time. This method is processor-agnostic and is measured by               

calculating the number of Multiply-Accumulate operations (MACs) done by the Neural Network to             

regenerate the output image. See Appendix F, Section F.4 for a MACs analysis of the GAN model. 

D.2 The Effects of JPEG Compression on Images 
JPEG Compression works by removing higher frequencies components from an image in the             

frequency domain. It lowers the file size of an image at the cost of reduced image quality. The                  

relationship between JPEG compression, file size and image quality will be presented in this section.               

This will be done for each of the selected image categories. For more details on the image categories,                  

please refer to Appendix E. 

D.2.1 Effects on Manga Images 
Manga images are the most radically different category explored in the project. The significant              

differences in performance and characteristics between Manga images and the other categories can             

be attributed to the following properties: 

● Manga images are primarily in the monochrome spectrum (with only black or white pixels),              

with almost no colour usage. Other image categories contain a full range of colours. 

● Manga images generally contain blocks of solid colours, with little or no gradients. Shading is               

done by using black lines instead of a different colour. This is unique to the Manga dataset -                  

most other categories contain gradients. 

● Manga images are drawn by hand, whereas other image categories are taken from digital              

cameras. As a result, Manga images do not contain the imperfections and minute details of the                

real world, which results in less details that can be lost during compression. 

D.2.2 File Size Effects 
A lower JPEG Compression level implies lower file size. In Figure D2 below, the file size ratio of the                   

compressed file to the original file (a PNG) is measured versus various JPEG Compression levels.               

File size ratio is computed as the Compressed Image file size divided by the Original Image file size,                  

expressed as a percentage. The metric was evaluated for various image categories. 
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Figure D2 - File Ratio (percentage of the original file size) vs JPEG compression level 

 

Observations:  

● The trend (across all categories) is not linear. Having a JPEG Compression level of 20%               

provides for a file size of significantly less than 20% of the original PNG image.  

● The non-linear trend varies depending on the level of compression. From JPEG Compression             

levels of 100% to 90%, the trend is steeper than the second segment of 90% and lower. 

● The effect of JPEG Compression on file size is category specific. Manga images have a               

different trend with an inflection point between the 40% to 60% JPEG Compression range.              

Moreover, the 100% JPEG Compression file size is almost equal to the original PNG file. This                

could be attributed to no (to very few) high frequencies components to discard initially. This is                

different from the other categories which lose around 40% immediately upon conversion from             

PNG to JPEG. Note that 100% JPEG compression is not lossless like it might imply.  

D.2.3 Image Quality Effects 
A lower JPEG compression level should indicate higher levels of distortion in the image and therefore                

a lower SSIM value. In Figure D3 below, the SSIM value between the Original Image and the                 

Compressed Image (for various compression levels) have been measured. The average SSIM value             

per compression level for a category has been plotted below for all categories.  
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Figure D3 - SSIM Value vs JPEG compression level for select image categories 

 

Observations: 

● The decrease in SSIM Value with respect to JPEG compression level is not linear. Assuming               

that the SSIM trend measures image quality similar to the a way that a human would, this                 

implies that JPEG Compression distortion to the quality of image is not linear with JPEG               

compression level. 

● Manga Images are quite resistant to structural distortion caused by JPEG. The worst JPEG              

Compression level, 1% still produces a 0.8 SSIM value for manga images versus the              

approximately 0.55 SSIM value for other categories. This significantly impacts the amount of             

improvement (measured by SSIM Score) that our model can achieve, since the SSIM Value              

for Manga images is already very high at any compression level. 

D.2.4 Non-Linearity of SSIM Value with JPEG Compression Level 
In the Figure D3 above, we deal with the average value of many images for a single compression                  

value for a single category. The average trends containing averages are smooth (for most categories).               

In Figure D4 below, we plot the SSIM Value vs. Compression level for three select sample images                 

from the Mixed image category. 
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Figure D4 - SSIM Value vs JPEG compression level for select images 

 

Observations: 

● The removal of JPEG frequencies have inconsistent and disproportionate effects on the SSIM             

Value. SSIM is based on the similarity between the structures of two images. In the graph                

above, the SSIM Value oscillates as JPEG compression changes. As a result, sometimes             

lower compression levels can achieve higher SSIM Values. This is a counter-intuitive result, as              

the frequency removal would imply a monotonically-decreasing structural quality. This          

behaviour was observed in several images. 

D.2.5 Samples of JPEG Compressed Images 
Presented below are a few examples of JPEG-compressed images, demonstrating some of the             

aforementioned properties and characteristics. 
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Figure D5 - JPEG compression on Face images 

 

Figure D5 demonstrates the effects of extreme JPEG compression on an image. At 1% JPEG quality,                

the image data is severely degraded. 

 

 

Figure D6 - JPEG compression on Manga images 

 

Figure D6 shows how little reduction in quality there is when JPEG compression is applied to Manga 

images. Even at 1% quality, the image looks mostly the same. Compare this to the Face image in 

Figure D5 from before, also at 1% JPEG quality. 
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Figure D7 - JPEG compression on Manga images, close-up 
 

Figure D7 shows a zoomed-in crop of the image from Figure D7. The JPEG compression artifacting is                 

more noticeable when inspecting the image closely in this way, but is still not very severe. 

D.3 Shortcomings of SSIM 
While SSIM strives to be a good metric to approximate how humans perceive similarity in images,                

unfortunately it falls short of achieving this goal in the context of JPEG compression. As seen in the                  

results in the previous sections, there are many counter-intuitive properties of SSIM as compared to               

compression level. Presented in Figure D8 below is the performance of SSIM alongside three other               

metrics, as compared to data provided by human test subjects, taken from [5]. The y-axes in each                 

graph show the quality ratings assigned by test subjects for a number of images, and the x-axes show                  

the score provided by each metric. SSIM, at the bottom-right, is definitely not linear, and suffers a                 

great degree of inaccuracy below around 30% human-rated quality. For example, human ratings of              

20% quality could result in SSIM Values as low as 0.5, or as high as 0.8. 
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Figure D8 - Performance of SSIM as a metric to approximate human perception of similarity [5] 
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Appendix E: Image Categories and Datasets Author: Gokul 
This section describes the data sources used for images in the project. 

E.1 Image Categories 
We initially prepared several datasets consisting of particular image categories from the            

MIRFLICKR-1M dataset. The sizes of each prepared category is shown in Figure E1 below. However,               

we didn’t have enough time to evaluate all of these datasets. The datasets we actually used are                 

presented in Table E1 following the figure. 

 

 

Figure E1 - Sizes of image categories in the MIRFLICKR-1M dataset 

 

Table E1 - Sizes of image categories used in project 

Category Image Count (Train/Test) Source 

Faces Train: 14200 images 
Test: 3524 images 

MIRFLICKR-1M [7] 

Flowers Train: 13778 images 
Test: 3444 images 

MIRFLICKR-1M [7] 
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Clouds Train: 7429 images 
Test: 1856 images 

MIRFLICKR-1M [7] 

Manga Train: 16914 images 
Test: 3000 images 

Manga 109 [16] 

Mixed Train: 15,001 images 
Test: 3,000 images 

MIRFLICKR-1M [7] 

 

The table below contains a list of publicly available dataset sources which the project has used, along                 

with a description of their images. 

 

Table E2 - Dataset sources 

Dataset Description 

MIRFLICKR-1M [7] A collection of 1 million photos uploaded to Flickr 
that have been curated and tagged. 

Manga 109 [16] A collection of manga images, predominantly 
black and and white. 

 

E.2 Dataset Pollution 
Upon inspecting the MIRFLICKR-1M dataset, it has been observed that there are some images inside               

each category that do not belong to that category, or represent poor examples of an image for that                  

category. It is difficult to determine an exact number of such anomalies, as such an inspection would                 

have to be manually done for each category. Each category has tens of thousands of images, so a                  

manual analysis would be too time-intensive, and the removal of such images becomes an intractable               

process. We refer to this situation as dataset pollution, and it degrades the performance of our models                 

to some degree, but is not prevalent enough to have a major impact. Figure E2 below provides a few                   

examples in the Faces dataset that aren’t good samples for that category. 
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Figure E2 - Examples of poor sample images in the Faces dataset  
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Appendix F: Results from GAN Model Author: Rifdhan 
This section contains some key results obtained from the GAN model, and some corresponding              

observations and conclusions for these results. 

F.1 Performance on All Datasets 
Presented below are the SSIM Scores and Values for all Standard Test Conditions (trained and tested                

on the same image category and JPEG compression level), when trained and tested using the Default                

Model (see Section F.4 in this appendix for results when modifying the model itself). Note that SSIM                 

Values are when comparing the Output Images to the Original Images, with the value at 0 training                 

level corresponding to the SSIM Value between the Input Images and Original Images. A graph for                

SSIM Score is provided in Figure F1, followed by a graph for SSIM value in Figure F2. 

 

 

Figure F1 - Performance for Standard Test Conditions (SSIM Score) 
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Figure F2 - Performance for Standard Test Conditions (SSIM Value) 

 

Observations: 

● Models which had a higher performance with SSIM Score were typically worse performers on              

the SSIM Value graph. This inverse relationship between the two graphs shows that when the               

Input Images are at a lower SSIM Value to begin with, there is greater potential for                

regeneration to occur, resulting in higher SSIM Scores. 

● Training and testing on lower JPEG compression level Input Images (such as 5% or 1%)               

results in the highest SSIM Scores, but the lowest SSIM Values. 

● The Manga dataset seems to have the lowest performance, most likely due to the limited               

degradation JPEG compression has on these types of images, and thus the limited             

regeneration potential (see Appendix D for a discussion on this). 

● The model trained and tested on a Mixed image dataset performed worse than the three               

models trained and tested on a specific image category (Faces, Clouds, and Flowers             

respectively). This suggests that the model is able to learn features specific to each image               

category to gain higher performance over just a generic image dataset. 
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F.2 Performance when Crossing Datasets, by Training 
This section explores performance when testing on a category different than the one trained on, and                

compares these results to training and testing on the same image category. The results are organized                

by what dataset was used for training. 

 

 

Figure F3 - Performance when trained on Faces 
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Figure F4 - Performance when trained on Clouds 

 

 

Figure F5 - Performance when trained on Flowers 
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Figure F6 - Performance when trained on Manga 

 

Observations: 

● Performance was best on the Flowers test set regardless of training image category, except              

for the model trained on Manga images. This suggests the Flowers dataset was the easiest to                

perform regeneration on. 

● All models performed poorly when tested on Manga images, except the model trained on              

Manga. However, the model trained on Manga only performed well on Manga, and performed              

poorly in every other image category. This is likely due to the very limited degradation Manga                

images experience during JPEG compression (discussed in Appendix D). 

F.3 Performance when Crossing Datasets, by Testing 
This section explores performance when testing on a category different than the one trained on, and                

compares these results to training and testing on the same image category. The results are organized                

by what dataset was used for testing. 
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Figure F7 - Performance when tested on Faces 

 

 

Figure F8 - Performance when tested on Clouds 
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Figure F9 - Performance when tested on Flowers 

 

 

Figure F10 - Performance when tested on Manga 
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Observations: 

● The model that performed the best on each test category was the model that was trained on 

the same image category, with the exception of Flowers. The model that performed the best 

on the Flowers test set was the model trained on Faces, though not by a large margin. With 

the exception of Flowers, these results indicate that training on a specific image category does 

indeed permit the model to learn features specific to that category, giving it an advantage in 

performance against models trained on other categories. 

F.4 Performance when Modifying the Model 
This section details performance characteristics when the model was modified to contain more or              

fewer layers, thereby increasing or decreasing the complexity respectively. 

 

 

Figure F11 - Performance for various model complexities (trained and tested on Faces at 10% JPEG) 

 

Observations: 

● As expected, adding more layers improved the model performance, while removing layers            

degraded the performance. However, since the gains in performance were marginal between            

the Complex and Default models, we decided to use the Default model for all further tests to                 

minimize computation time. Also worth noting: we were unable to test a model with more than                

28 layers due to memory limitations on the ECF machines (see Section 3.3). 
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When comparing Machine Learning models with different internal structures, a common metric used is 

the number of Multiply-Accumulate operations (MACs) performed per pixel. Presented in Table F1 are 

the MACs per pixel for each of the 4 model complexities explored. 

 

Table F1 - Multiply-Accumulates per Pixel 

Model Variation MACs per Pixel 

Very Simple (8 Layers) 114,368 

Simple (16 Layers) 262,208 

Default (24 Layers) 410,048 

Complex (28 Layers) 483,968 

 

Table F2 below presents the change in MACs and SSIM Score for each of the model variations,                 

compared to the baseline of the Default model. While the numbers may suggest the simpler models                

are worth sacrificing performance to gain lower computation time, our goal with the project was to                

generate high-quality Output Images, and the quality of images exhibited by the two simpler models               

was visibly inferior. As for the more complex model, we found the small increase in performance was                 

not worth the significantly higher computation time required. 

 

Table F2 - Performance Changes versus Computational Overhead 

Model Variation Change in MACs (versus 
Default model) 

Change in SSIM Score after 
640,000 training examples 
(versus Default model) 

Very Simple (8 Layers) -295,680 (-72.1%) -0.0147 (-36.7%) 

Simple (16 Layers) -147,840 (-36.1%) -0.0033 (-7.0%) 

Default (24 Layers) 0 (0%) 0 (0%) 

Complex (28 Layers) +73,927 (+18.0%) -0.0007 (-1.5%) 

 

F.5 Performance at Various JPEG Compression Levels 
Presented below are performance evaluations of the model at various levels of JPEG compression.              

We were able to explore 10%, 5%, and 1% JPEG compression. 
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Figure F12 - Performance at 3 JPEG compression levels (trained and tested on Faces) 

 

 

Figure F13 - Performance when training and testing on two different levels of JPEG compression 

(trained and tested on Faces) 
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Observations: 

● Higher levels of compression (corresponding to lower percentages) exhibit higher amounts of            

data regeneration. This is likely due to the fact that at higher compression, more data is                

discarded, so there is more potential for data to be regenerated. 

● When the model is tested on a different level of JPEG compression than it was trained on, the                  

performance is very poor, as seen in the red and orange plots in Figure F13. The orange plot                  

(trained at 1% JPEG, tested at 10% JPEG) consistently has a negative SSIM Score, indicating               

the model deteriorated the image quality, which is a very undesirable result. 

F.6 Performance on Training versus Testing Data 
Comparing the performance of the model on data that it has seen during training and on data that it                   

has never seen allows us to gain an understanding of how much overfit there is in the model.                  

Presented in Figure X14 below is the performance on the Faces dataset, against a subset of the                 

training set and a separate testing set. 

 

 

Figure F14 - SSIM Score vs training for seen vs unseen images 
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Observations: 

● The performance is very similar, exhibiting the same micro-variations as the model trains on              

more images. This indicates a very low amount of overfit. Nonetheless, the performance is              

marginally higher on the previously-seen images than the unseen images. 

F.7 Samples with Good Performance 
This section presents a few test images which performed well with the GAN model, when evaluated                

using the SSIM Score metric. All figures display from left-to-right, top-to-bottom: the Original Image,              

Input Image, and Output Image (as indicated by the image titles). 

 

 

Figure F15 - Highest SSIM Score when trained/tested on Faces at 10% JPEG. SSIM Score: 0.126. 
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Figure F16 - Highest SSIM Score when trained/tested on Clouds at 10% JPEG. SSIM Score: 0.124. 
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Figure F17 - Highest SSIM Score when trained/tested on Flowers at 10% JPEG. SSIM Score: 0.162. 
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Figure F18 - Highest SSIM Score when trained/tested on Mixed at 10% JPEG. SSIM Score: 0.126. 
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Figure F19 - Highest SSIM Score when trained/tested on Faces at 5% JPEG. SSIM Score: 0.163. 
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Figure F20 - Highest SSIM Score when trained/tested on Faces at 1% JPEG. SSIM Score: 0.225. 

 

Observations: 

● Most of the images have lots of flat colour tones, or gradual gradients, which do not lose much                  

detail during JPEG compression. There are few jagged objects in the images. These             

properties result in good regeneration properties following JPEG compression. 

● Some of the images are not good examples for their image category (such as Figure F19).                

Dataset pollution is discussed in Appendix E. 

F.8 Samples with Poor Performance 
This section presents test images which performed very poorly with the GAN model, when evaluated               

using the SSIM Score metric. In all examples, the images had negative SSIM Scores, indicating the                

Compressed Image was further degraded by the model. All figures display from left-to-right,             

top-to-bottom: the Original Image, Input Image, and Output Image (as indicated by the image titles). 
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Figure F21 - Lowest SSIM Score when trained/tested on Faces at 10% JPEG. SSIM Score: -0.0914. 

 

 

Figure F22 - Lowest SSIM Score when trained/tested on Clouds at 10% JPEG. SSIM Score: -0.0620. 
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Figure F23 - Lowest SSIM Score when trained/tested on Flowers at 10% JPEG. SSIM Score: -0.0878. 

 

Page 64 



 

 

Figure F24 - Lowest SSIM Score when trained/tested on Mixed at 10% JPEG. SSIM Score: -0.125. 

 

 

Figure F25 - Lowest SSIM Score when trained/tested on Faces at 5% JPEG. SSIM Score: -0.0856. 
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Figure F26 - Lowest SSIM Score when trained/tested on Faces at 1% JPEG. SSIM Score: -0.194. 

 

Observations: 

● Most of the images have fine-grained textures and/or noise, which gets extremely distorted             

when JPEG compression is applied. This results in very poor regeneration performance. 

● Several images (Figures F22, F23, and F25) are poor samples for their respective image              

categories, serving as examples of pollution in the datasets (discussed in Appendix E). This              

potentially also contributes to poorer performance, since the models are specialized for a             

particular category in each of these cases. 
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Appendix G: Results from CNN Model Author: Zi Chien 
This section presents the results generated by the CNN model. 

 

 

Figure G1 - Performance of CNN model in Standard Test Conditions 

 

Observations: 

● The model starts with a similar SSIM Score after 16,000 training examples regardless of image               

category, and improves in performance at different rates for different datasets. The final SSIM              

Scores after 640,000 training examples is around 0.05, and varies by dataset. 
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Appendix H: Comparing Results (GAN vs CNN) Author: Zi Chien 
This section compares the performance of the GAN and CNN under select test conditions. 

 

 

Figure H1 - Performance of GAN and CNN on the Faces dataset 

 

 

Figure H2 - Performance of GAN and CNN on the Clouds dataset 
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Figure H3 - Performance of GAN and CNN on the Flowers dataset 

 

Observations: 

● The GAN has better performance in two of the three test datasets. Furthermore, we found the                

GAN had lower resource requirements on the ECF machines, and was easier to use and work                

with, which is why it was selected as the final model for the project. 
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Appendix J: Existing Regeneration Technology Author: Henry 
As part of evaluating the performance of our Machine Learning solution to the problem, we examined                

the performance of existing generic image processing tools. Specifically, we applied the Smart             

Sharpen filter in Adobe Photoshop CC 2018. Although this tool was not specifically designed to               

reverse JPEG compression loss (we were unable to find any such tool), we feel it was the most                  

appropriate popular consumer tool we could find for the task. Table J1 below presents a few key                 

performance results for this method, when tested on 50 random test images at 10% JPEG quality.                

Figure J1 below the table shows a histogram of the SSIM Scores for the 50 test images. 

 

Table J1 - Performance of Adobe Smart Sharpen 

Performance Characteristic Value 

Average SSIM Score -0.0625 

Variance of SSIM Score 0.00145 

Minimum SSIM Score -0.175 

Maximum SSIM Score -0.00475 

 

 

Figure J1 - Histogram of SSIM Scores for 50 test images 
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Surprisingly, all 50 test images had negative SSIM Scores after using the Adobe Smart Sharpen tool,                

indicating they were degraded further. These results are clearly inferior to the results we are able to                 

achieve with our Machine Learning approach. 

 

For a visual comparison, the images with the lowest and highest SSIM Scores are presented in                

Figures J2 and J3 below. In both figures, the 10% JPEG Input Image is on the left, and the Output                    

Image produced by the Adobe Smart Sharpen tool is on the right. 

 

 

Figure J2 - Test image with lowest SSIM Score 
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Figure J3 - Test image with highest SSIM Score 
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Appendix K: Glossary Author: Henry 
The table below contains some key terminology and definitions pertaining to the project. 

 

Table K1 - Key Terminology 

Term Definition 

Convolutional 
neural network 
(CNN) 

Set of deep neural networks that is successful in analyzing visual imagery. It             

improves the cost of the network by the reuse of weights in its sliding              

windows.[10] 

Data Recovery Salvaging corrupted data and reverting it back to its original form. 

Deprecated 
The discouragement of use of features and practices that have been superseded            

or is no longer considered efficient or safe but is still available. 

Generative 
Adversarial 
Network (GAN) 

Deep neural net architectures comprised of two nets, pitting one against the other             

(thus the “adversarial”). [10] 

GPU 

Specialized electronic circuit designed to to accelerate the creation of images,           

their highly parallel structure makes them more efficient than general-purpose          

CPUs for algorithms where the processing of large blocks of data is done in              

parallel. Modern GPUs are very efficient at manipulating computer graphics,          

image processing and subsequently training ML models. 

High-Level 
Operations that are more abstract in nature, where overall goals and systemic            

features are typically more concerned with the wider, macro system as a whole. 

Image Denoising Minimizing random variations in colour or brightness in pixels in an image. 

Image 
Regeneration 

Using an ML model to attempt to restore an image to its original state after it has                 

undergone lossy JPEG compression. 

Input image 
An image that the model transforms according to parameters it learned from the             

target image. 

Lossless 
Compression 

Class of data compression algorithms that allows the original data to be perfectly             

reconstructed from the compressed data. 

Lossy 
Compression 

Class of data encoding methods that uses inexact approximations and partial           

data discarding to represent the content. 
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Machine 
Learning Model This term refers to the model artifact that is created by the training process. 

Neural network 
An information processing paradigm that is inspired by the way biological           

nervous systems, such as the brain, process information. [11] 

Output image 
An image transformed by the model according to the parameters learned from            

the target image. 

Overfit 

A modeling error which occurs when a function is too closely fit to a limited set of                 

data points. Overfitting the model generally takes the form of making an overly             

complex model to explain idiosyncrasies in the data under study. [12] 

SSIM (SSIM 
Value) 

(SSIM) index is a method for predicting the perceived quality of digital images             

and videos. A SSIM values range from 0 to 1 with values close to 1 representing                

more similarities. 

SSIM Score 

A metric devised for the purposes of this project. It is the resultant between the               

SSIM Value of the (Original, Input) image pair subtracted from the SSIM Value of              

the (Original, Generated) image pair. If the SSIM Score is less than 0, then the               

model has further degraded the Input image. If the SSIM Score is greater than 0,               

then the model has regenerated some of the data lost in compression.  

Standard Test 
Conditions 

Test cases where the model is tested on the same image category that it was               

trained on. 

Super Resolution Class of techniques that increases the resolution of an image. 

Target image An image that the model “learns” in order to produce an output image. 

Testing Dataset 
A dataset of examples used only to assess the performance (i.e. generalization)            

of a fully specified classifier. [6] 

Training Dataset 
A dataset of examples used for learning, that is to fit the parameters (e.g.,              

weights) of, for example, a classifier. [6] 

Underfit 

A modeling error where the model is not adequately complex to learn the             

intricacies of the relationships in the data being trained on. Can also happen if              

the amount of training is insufficient. 
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